
J. Fluid Mech. (1972), vol. 51, part 4, pp.  625-635 

Printed in Great Britain 
625 

Solitary waves in concentrated vortices 

By S .  LEIBOVICH AND J. D. RANDALL 
Department of Thermal Engineering, Cornell University, Ithaca., N.Y. 

(Received 26 July 1971) 

A nonlinear integro-differential equation governing finite amplitude wave pro- 
pagation on concentrated vortices is solved numerically. The solution to the 
Cauchy problem shows a solitary wave development qualitatively similar to 
solutions of the Korteweg-de Vries equation. A perturbation solution of the 
stationary form of the evolution equation confirms the unsteady calculation. 

1. Introduction 
It has been shown earlier (Leibovich 1970) that a nonlinear integro-differen- 

tial equation governs the evolution of small finite amplitude wave motions 
propagating on concentrated vortices. This equation may be written in the form 

where c1 and c3 are constants given in the paper cited?. The equation arises in an 
approximation procedure which requires k (which plays the role of a wavenum- 
ber) to be small. For the stationary case Pritchard (1970) has presented an equiva- 
lent equation. 

For k = 0, (1) reduces t o  the Korteweg-de Vries equation, which admits soli- 
tary wave solutions. One presumes that such disturbances are possible for k > 0, 
but this requires verification. This question is explored in the present note in two 
ways. The first approach, which represents the major effort, consists of numerical 
solutions of the Cauchy problem for (1) for various values of the parameter 
(2 In (l/k))-I, to which we assign the label p. The initial condition chosen is one for 
which exact results for the Korteweg-de Vries case p = 0 are known (Zabusky 
1968), and we are therefore able to compare our results with an exact solution. 

For p, small solutions are qualitatively much like those in the Korteweg-de 
Vries case. The initial distribution breaks up into two (separating) solitary 
waves and an oscillatory tail that travels in the opposite direction. The shape, 
speed and distribution of 

'momentum ' (j --m A (x, t )  dz) and 'energy ' ( j  - -m * A ~ ( x ,  t )  dx)  

of the emerging solitary waves differ from the Korteweg-de Vries case, but nearly 

t This is the required form in physical (2, t )  space of Leibovich's (1970) equation (27), 
which is the Fourier transform of (1).  Equation (28) of that paper is obtained from (27) 
by an ad hoc, but asymptotically equivalent, replacement of certain terms. 
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all the energy and most of the momentum of the wave systems continues to be 
transported by the solitary waves. As p increases, the differences, of course, 
increase and for sufficiently large p (between 0.25 and 0.33) qualitatively different 
results are found and are explored for p = 0.5. 

Our second approach consists of the direct construction of solitary waves by 
means of a perturbation solution (for small p) of the stationary form of (1). The 
results closely confirm the transient calculations and show that, compared to a 
Korteweg-de Vries solitary wave of the same amplitude, the p > 0 waves are 
narrower and slower. This is consistent with the formula for solitary wave speeds 

c, = clEslMs, 

derived by Benjamin (private communication) for dispersive equations more 
general than (1).  (Integrals for energy and momentum are taken over individual 
solitary waves.) 

It therefore appears that the model of wave propagation on concentrated 
vortices incorporated in (1) does contain the possibility of solitary waves. Experi- 
mental evidence to this effect is already conclusive (Pritchard 1970), but is not 
sufficiently detailed to permit a comparison with the present results. 

2. The equation governing wave development 
The values of the coefficients c1 and c,, although fixed by the particular vortex 

motion under consideration and important in the calculation of the stream func- 
tion are irrelevant to the solution of (1). For if the substitutions (note that 

are made in (l), dependence on c1 and c3 is removed. The coefficient cc may be 
chosen arbitrarily and is inserted for convenience. 

It is worth noting at this point that the maximum amplitude A,,, may be 
arbitrary without violating the small disturbance assumptions giving rise to 
equation (1) .  This is important, since we shall later take the initial amplitude of 
U to be 5 and a = 6, and so A,,, is potentially rather large (depending on c,/c,). 
According to the derivation by Leibovich (1970), however, the perturbations 
are of order eA,,,, where E: is an adjustable small parameter. Thus A,,, is arbi- 
trary, although its product with E: must be small. 

We infroduce the 'momentum ' 

B ( T )  = U ( x ,  T )  dx 

E ( T )  = / +U2(x,  T ) d x .  

- -m 

m 
and the ' energy ' 

- m  

As indicated below, (1) (now in terms of U and T )  has the conservation properties 

dMldT = dE/dT = 0, 



Solitary waves i n  concentrated vortices 627 

provided that M ( 0 )  < 00 and E(0) < m. Such conservation laws serve as useful 
checks on the numerical calculation. I n  fact, our nuinerical algorithms are 
carefully constructed to be inherently compatible with energy and momentum 
conservation. 

Conservation of M follows simply by integrating (1 )  over all x. To show that 
E is conserved, multiply (1) by U and integrate over x to obtain 

after three integrations by parts and application of the boundary condition 
U-t  0 as x -+ 00. In  the x, 5 plane the integrand is antisymmetric about the 
line x = 5 and hence the integral over the plane vanishes, giving the desired 
result. Actually, M and E are directly related to the total disturbance axial 
momentum and kinetic energy in the vortex core, but the connexion is not 
important here. 

To conclude this section, note that by repeated integration by parts followed by 
differentiation, and by use of the scalings introduced in this section, the governing 
equation (1) may be written in the form 

which is approximated by finite differences in the next section. 

3. Numerical procedure 
Let h, be the step in x from the spatial grid point i to its neighbour, i + 1, and 

let h, be the time step from time level n to time level n + 1. The following 3 time- 
level explicit finite-difference formula is stable, compatible with (2) and con- 
serves energy and momentum. 

( U?+l- U7-')/2h, = ( ~ / 3 0 h , )  (Ur+2 + U7+1 + UT + Ur-z_, + U7-2) 

x (q+, + uT+l - UY-1- UT-2) 

+(1/2h:) (uT+2-2ur+1+2uT-1- UT-2) 

N 

j=1 
+/3hs3 2 W(i-j)  (UY+2-4UY+1+6UY-4UY-1+ UY-2) 

+TE+Q. (3) 

The weight function W ( i - j )  is discussed later. TE is the truncation error as- 
sociated with the difference approximations to derivatives and Q represents the 
various errors involved in the replacement of the integral by the numerical 
quadrature. The truncation error may easily be shown to be O(h,2) + O@). The 
quadrature formula and quadrature error Q require some elaboration, since dif- 
ficulties due to the infinite range of integration and t o  the singular nature of the 
kernel arise. A brief discussion is included in the appendix. 

Consider first the errors associated with a truncated range of integration. 
40-2 
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Initially, the disturbances will be, by hypothesis, localized near x = 0. In  fact, 
initial data is chosen to be of solitary wave form and decreases exponentially as 
1x1 increases. Experience with the Korteweg-de Vries equation (Zabusky 1968) 
shows that the initial distribution breaks up into solitary waves moving at  a 
definite finite speed, and a small amplitude oscillation moving in the opposite 
direction with the group velocity for infinitesimal waves. Thus the disturbed 
region grows linearly with time, but for finite time is bounded, and outside this 
region of disturbance U is exponentially small. 

A similar picture holds for equation ( 2 ) ,  but the integral term spreads the dis- 
turbance effect over a larger region, causing the decay a t  large distances to be 
algebraic. In  fact, it can be shown (Randall 1972) that the integral term behaves 
like 24sgnxN(O) x - ~  as 1x1 -+ a. The integral is truncated on the left at x = L ,  
and on the right a t  x = L, in the numerical work. Our procedure is to choose 
L, and L, to ensure that 24M(O)/L! and 24M(O)/Li are smaller by about two orders 
of magnitude than the other sources of error permitted in the calculation. This 
necessitates increasing L, and L, occasionally as the disturbance region grows. 
When this was done the values of U were set equal to zero at  the new grid points. 
They became non-zero, but small, as the calculation resumed. For the worst case, 
p = 0.1, it was found that the grid had to be periodically enlarged from an initial 
size of 301 points to 401 points in the time interval of the computation. A von 
Neumann stability analysis of the linearized version of (2 )  indicates stability 
if the time and space increments are chosen so that h, 6 2hi/,/27 if p = 0. For 
p > 0 the condition is more stringent, but h, = hi1427 was found to be satisfac- 
tory in practice. 

Zabusky (1968) has investigated solutions of the Korteweg-de Vries equation 
subject to the initial condition? 

U ( x ,  0) = p ( p  + 1 )  sech2x. (4) 

Since several properties of the time-dependent solution of the Korteweg-de Vries 
equation corresponding t o  this initial condition are well known we have adopted 
it for the present work, with p ( p  + 1 )  = 5. In  order to start our calculation one 
must know both U(x ,  0 )  and U ( x ,  h,). We take 

U(x ,  h,) = 5 sech2 (x+ ch,), 

where c = aE(O)/M(O) is the speed of propagation of a solitary wave with the 
same energy and momentum as the initial distribution. 

The step size used in most of our calculations was h, = 0.1. In  computations 
using this mesh, energy fluctuations remained less than 0.18 % of the initial 
energy, and momentum deviated by less than 0.73 % of its initial value. With this 
mesh size it was found that a calculation for a single value of p which ran for a time 
sufficient to clearly distinguish the ultimate steady system of permanent waves 
(about 2400 time steps) required about an hour and a half on an IBM360165. 
Furthermore, computation time is generally proportional to N5, where N is the 
number of mesh points. Calculations with reduced step sizes to check convergence 

Zabusky treated solitary waves of negative amplitude, and so there are inconsequen- 
tial differences in sign between his work and ours. 
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of the algorithm are therefore very expensive. We have been content with a com- 
putation using a step size hx = 0.075, running for 1185 time steps with ,8 = 0.1. 
This is comparable to the time level reached after 500 steps with hx = 0.1. The 
difference in the main peaks is less than 1%, while the second peaks remain within 
5 yo. Maximum deviation in the wave form is 6.7 yo and occurs on the downstream 
side of the main peak. 

4. Perturbation procedure for stationary solutions 
The stationary form of ( 2 ) ,  obtained by replacing U, by c,Ux and integrating 

once, is m 

c, u = + a ~ z +  uXx +IS uCf5 In (2lx - 51) sgn (x - 5) tit. ( 5 )  
-a 

For ,8 = 0 the solitary wave solution is U = a sech2ax, where a = (cla/12)* and 
the speed is c, = &xu. For /3 small, but non-zero, a solution is sought in the form 

m 

c, = &au p s n ,  
n=O 

where 7 = vx. Substituting (6) into ( 5 )  and equating coefficients of /3" yields 

U ~ + ~ U ~ - ~ S , U ,  = 0, 

with solution Uo = sech2r, so = 1, and 

U:+(12Uo-4)Un = k n U , - G n ,  

where G, = (2 In 2~-1) U;l + I,, 

The boundary conditions imposed are 

U,(O) = Un(c0) = 0 (n 2 1). 

Equations (7) have the two homogeneous solutions: 

O1 = -4U; = sech2ytanh7, 

8, = O l f 2  = *{7 + 2 sinh2r + 15 sechZy(y tanh 1 - l)}. 

The constants s, are determined by the solvability condition, which gives 

The solutions for the U, are given by 

(7) 
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We have computed U, and s1 using this method. The integral I, was evaluated 
by the sum formula of 4 3, and the integrals in (8) and (9) were evaluated by the 
trapezoidal rule, with step sizes of 0.02 and 0-01 , and over 7 intervals from 7 = 0 
to 7 = 8 or 7 = 10. All runs agreed to four decimal places. Because of the form 
of G,, s1 is independent of CT, and hence of wave amplitude a, and has the value 
s1 = - 0.2590. This shows that c&xa < 1 for /3 > 0 and depends chiefly upon p 
and not amplitude. Higher approximations (sn, n 2 2) do depend upon amplitude. 

1 1 I 
4 5 6 

FIGURE 1. U,  as a function of 7 for u = 1.94, corresponding to the leading solitary wave 
evolving for /3 = 0.1667 from the unsteady calculations. 

A plot of U, is shown in figure 1 for a = 7.5 (note that as a function of 7, U, 
depends only weakly upon a through the log CT term in G,, but 7 itself depends 
upon a) .  Figure 1 shows that the solitary wave is narrower in the central portion 
and, very slightly, broader in the tail for p > 0 than the corresponding Korteweg- 
de Vries wave. 

5. Numerical results' 
Equation (3) has been solved for the Korteweg-de Vries case, with p = 0, and 

for values of p of 0.1, 0.1667, 0.25 and 0.5, and using the constant factor a = 6. 
The choice for a is arbitrary. However, the time development of the wave de- 
pends on the product of a and the initial amplitude; if this is too small the com- 
puting expense is prohibitive. Attention is directed to the emergence of solitary 
waves, and the computations in each case are pursued until the solitary waves are 
clearly defined. Before discussing the results it should be emphasized that each 
(stationary) solitary wave amplitude and length parameter pair (a, k )  generates a 
continuum of other parameter pairs by defining a curve in (a, k )  space, which 
corresponds to the same solution owing to the scaling properties of equation (5). 

The Korteweg-de Vries case, /3 = 0, was calculated primarily to serve as a 
reference and as a check on our numerical procedure. The results agree with those 
from the GGKM theory (Gardner et al. 1967) and outlined by Zabusky (1968). 
The distribution (4) should break up into two solitary waves, with amplitudes 
6.42 and 1.25 and speeds of - 12.84 and - 2.50 respectively. A small amplitude 
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oscillating tail should spread in the positive x direction. All of these rigorous 
predictions are reproduced by the numerical computations within the accuracy 
expected from a discretized formulation. For example, the error in the main peak 
amplitude is 2 % and that of the second peak is 5 %, while speeds agree to within 
1-4 and 3.2 % respectively. 

FIGURE 2. Temporal development of solitary waves for a! = 6, U(z,O) = 5 sech2 z. 
-, p = 0.1667; - - -, /3 = 0. 

The evolution of waves of permanent form for /3 = 0,O.l and 0.1667 is similar, 
and figure 2,  summarizing the results for /3 = 0 and ,i3 = 0.1667, is typical. 

In  all three cases the initial distribution begins to grow in amplitude and 
shrink in width as it moves in the negative x direction. The increase in peakedness 
is symmetrical, except for the splitting of a second smaller solitary wave behind 
the main peak. As time proceeds, the main peak separates from the smaller 
solitary wave and ultimately two distinct solitary waves remain. In  the case of 

= 0.1667 the figure suggests the possibility that a third solitary wave may form. 
This is not the case. The smallest maximum in the figure in fact belongs to a small 
amplitude dispersing ‘tail’ which exists for all three of the calculations, but 
which is generally too small to be evident in the drawing. 

Trajectories of the solitary waves and of the first few peaks of the dispersing 
tail are shown in figure 3. The largest solitary wave reached its permanent speed 
almost immediately. Identification of the small solitary wave is made long before 
it separates from its companion, and its speed during the gestation period is of 
course non-uniform. The broken lines in these figures represent the speeds that 
should be obtained according to the Benjamin formula mentioned earlier, i.e., 
the speed c, of a solitary wave is (for equations in the T co-ordinate) 

cs = aEsIMs, (10) 
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where E, and M, are the energy and momentum of an individual solitary wave. 
As may be seen, there is good agreement between (10) and the solitary wave 
trajectories, and given the uncertainty in location of peaks (due to finite mesh size) 
this is probably the best way to decide speeds of solitary waves. 

T 

-8 -4 0 4 Y 
X 

FIGURE 3. Trajectories of maxima of solitary waves (left sloping) and oscillatory tail 
for a: = 6, U ( 2 ,  0)  = 5 sech2 2. -, p = 0.1667; -.-, p = 0; A, speeds determined from 
equation (10) for /3 = 0,1667; 0, speeds determined from Zabusky (1968) for /3 = 0. 

Figure 4 compares the ultimate wave forms of the leading solitary wave 
for /3 = 0.1667 with that for a solitary wave of the same amplitude for p = 0. 
The circles are points calculated for /3 = 0.1667 by the stationary solution of the 
preceding section. The speed for /3 = 0.1667, as computed from formula (lo), 
is 13.95. This may be compared with the corresponding result obtained by the 
method of 93, which produces the corresponding value of 14-35 with the next 
order correction expected to be of the order of p 2  or 3 %. 

Although the cases p = 0 and /3 > 0 are similar in nature, some differences 
between them may be noted. The final amplitudes of the solitary wave increase 
and their bandwidths decrease with increasing p. Increasing proportions of the 

yo initial energy yo initial momentum 
r h 

\ I 
A 

-l 

First solitary Second solitary First solitary Second solitary 
P wave wave wave wave 

0 93.28 6.66 73.8 27.6 
0~1000 59.56 10-26 67.6 32-2 
0.1667 85.42 14.46 61-3 35.1 

TABLE 1 
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initial energy and momenta ultimately reside in the second solitary waves 
as p increases, as may be seen in table 1. Nearly all the initial energy is trans- 
ported by the solitary waves (over 99.8% for all three cases shown). The table 
further suggests that the momentum ultimately residing in the solitary waves de- 
creases as @increases. For the Korteweg-de Vries case the solitary waves actually 
end up with more than 100% of the initial momentum at the expense oftthe 
oscillating tail, which possesses a momentum defect. This is known to be the case 

- 1  0 1 
X 

FIGURE 4. Comparison of the ultimate wave forms of the leading solitary wave for 
p = 0.1667 with that for a solitary wave of the same amplitude but for p = 0. -, 
leading solitary wave; - .-, solitary wave of same amplitude; 0, points computed using 
the perturbation method and figure 1. 

from the rigorous results of Gardner et al. (1967) (cf. Zabusky 1968). Por the 
present case, the exact tail energy should amount to 0.12 yo of the total and there 
should be a 3.3 yo defect in momentum. Table 1 indicates a numerical value of 
0.06 yo for tail energy and 1-4 % for tail momentum. In  the tail, however, one is 
dealing with sums of very small numbers. Uncertainty in the definition of the 
beginning of the tail and the finite range of integration which truncates the tail 
are probably sufficient to explain the differences. One would expect the errors to 
be at  least as large for /3 > 0 and this makes speculative any deductions of 
trends concerning the tails as /3 varies. 

Our governing equation ( 2 )  is consistent with the perturbation from which it 
derives only if /3 remains small. It should be kept in mind, therefore, that the cases 
/3 = 0.25 and 0.50 are very likely of no physical interest. Nevertheless, we have 
made computations for these cases in an attempt to gain a general understanding 
of the behaviour of solutions of (2) as /3 varies. When we put /3 = 0.25 and 0-50, 
a solution with a completely different nature emerged. This new behaviour 
was explored in a detailed calculation for the case /3 = 0.50, the results of which 
will be described briefly below. Ashort-time calculation for /3 = 0.25 demonstrated 
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the same initial behaviour and it is likely that the description below can be ap- 
plied in toto to all values of p larger than 0.25. Instead of retaining an appearance 
of symmetry, the forward moving face of the main peak initially steepens and 
emits a sequence of smaller amplitude waves ahead of its own position. All waves, 
including the main peak, disperse and subside as time progresses, and no waves 
of permanent form remain. One might describe the behaviour as an attempt to 
generate an infinite wave train, reminiscent of the cnoidal waves ofthe Korteweg- 
de Vries equation, with only a finite amount of energy. 

This anamolous behaviour is due to a frequent (in axial position) change of 
the sign of the term U, - aUU, caused by an increase in the magnitude of the 
integral term. Exactly the same kind of behaviour results from the Korteweg- 
de Vries equation if the sign of the third derivative is changed (U, = aUU, - U,,,) 
while keeping cz and U(x ,  0 )  positive. The initial direction of motion is governed 
by the nonlinear term and is towards x decreasing as before. However, permanent 
waves cannot form, and the initial distribution breaks up and disperses as 
described previously. Permanent waves are possible for p = 0.50 if the sign of a 
is changed (or, equivalently, the sign of U(x,  0)). Then rightward (x increasing) 
propagating wave patterns occur and are similar to the other computed cases, 
except that now there are more solitary waves, and each of these are bracketed 
by small negative troughs. A more detailed description of these computations is 
given by Randall (1972). 

6.  Conclusions 
Our results may be summarized by the following description. An initial dis- 

tribution of U = 5sech2x decomposes into two solitary waves moving in the 
negative x direction and a small amplitude oscillating tail (assuming both 
positive and negative amplitudes) that propagates in the direction of x increasing. 
The larger solitary wave has an amplitude exceeding that of the initial condition 
and moves faster than the smaller wave. Since the oscillating tail disperses, the 
only ultimate evidence of the initial condition is two infinitely separated solitary 
waves. 

As /3 increases from zero, the solitary waves increase in amplitude and de- 
crease in bandwidth. Nearly all energy and momenta of the wave system remains 
with the solitary wave pair, but the portion accruing to the second wave increases 
as /3 increases. Consistent with this, the ratio of the amplitude of the second 
to first solitary wave increases with /3. At some value 0.1667 < /3 < 0.2500 that 
we have not located precisely, this deceleration of the solitary waves is catas- 
trophic and the picture painted above becomes inapplicable, as the dispersive 
term in equation (1) in effect changes sign. Permanent waves are no longer pos- 
sible. If, however, the sign ofa  (the coeBcient of the nonlinear term) is reversed, 
the formation of a solitary wave and an oscillatory tail again proceeds, but with 
the opposite directions of propagation. These waves have speeds exceeding 4aa 
and apparently more solitary waves emerge from the initial disturbance. This 
is not likely t o  be physically meaningful in the context of waves on concentrated 
vortices, for which k must be small. 
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Appendix 
A quadrature formula representing the truncated integral must be chosen to 
avoid large errors near the singular point, since many quadrature formulae 
have errors that are proportional to derivatives of the integrand (kernel included, 
of course). The approximation used here results from integrating the integral 
exactly from xj - frh, to xj + +hx, using a Taylor series expansion for UtES5 about 
the point c = xi and then replacing the derivative a t  xi by finite-difference 
approximations. This leads to the single-step contribution (before the last step) 
from the j th  grid point to the integral evaluated a t  the ith grid point of 

where m = i - j  and 

W(m) = 

It is not difficult to show (Randall 1972) that the error to the quadrature in- 
volved in using this formula is O(h$ In h,), as is the error due to omitting the singu- 
lar point 6 = x. 

h, W(m) CUZ,XZ)?, 

(mllml) (1n2hz- 1 + (Iml +fr)Wlml+&--  (Iml-fr) In (Iml -#}m * 0, { 0,m = 0. 

REFERENCES 

GARDNER, C. S., GREENE, J.M., KRUSKAL, M.D. & MIURA, R.M. 1967 Method for 

LEIBOVICH, S. 1970 Weakly non-linear waves in rotating fluids. J .  Fluid Mech. 42, 803. 
PRITCHARD, W. G. 1970 Solitary waves in rotating fluids. J .  Fluid Mech. 42, 61. 
RANDALL, J. D. 1972 Ph.D. thesis, Cornell University. 
ZABUSKY, N. J. 1968 Solutions and bound states of the time-independent Schrodinger 

equation. Phys. Rev. 168, 124. 

solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095. 


